Domain of the definition of function
$f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ is $($ where $[.] \rightarrow G.I.F.)$
$( - \infty ,2)\, \cup \,[ - 1,2]$
$[0,2]$
$[-1,2]$
$(0,2)$
Range of the function
$f(x) = \sqrt {\left| {{{\sin }^{ - 1}}\left| {\sin x} \right|} \right| - {{\cos }^{ - 1}}\left| {\cos x} \right|} $ is
If $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, then $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right]$ is equal to
Suppose that a function $f: R \rightarrow R$ satisfies $f(x+y)=f(x) f(y)$ for all $x, y \in R$ and $f(1)=3 .$ If $\sum \limits_{i=1}^{n} f(i)=363,$ then $n$ is equal to
If $f(x) = \cos (\log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $
For a suitably chosen real constant $a$, let a function, $f: R-\{-a\} \rightarrow R$ be defined by $f(x)=\frac{a-x}{a+x} .$ Further suppose that for any real number $x \neq- a$ and $f( x ) \neq- a ,( fof )( x )= x .$ Then $f\left(-\frac{1}{2}\right)$ is equal to